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AUTOMATED CURRICULUM DESIGN
FOR REINFORCEMENT LEARNING

WITH GRAPH THEORY AND EVALUATION HEURISTICS

SUMMARY

In reinforcement learning, models try to find the environment dynamics and the policy
that will take them to the target by exploring the environment. For this purpose,
environment-centric or model-centric auxiliary methods can be used to teach the target
task to the models in a faster way. Model-centric solutions mostly serve to change the
architecture and update sensitivity of the model, while environment-centric solutions
allow to adjust the environment dynamics and the difficulty of the target task. In
reinforcement learning problems, in order for the model to analyze the environment
thoroughly, it must first discover most critical and ground situations, and then learn
(exploit) all possible values of all important situations. But the more a model is
inclined to explore, the further away it is from exploitation, and the more inclined it
is to exploitation, the further away from discovery. Both of the mentioned approaches
offer various suggestions to solve the exploration-exploitation dilemma, which is one
of the intensive research topics in the reinforcement learning field.

It may be slow or impossible for the model to learn a relatively difficult environment or
task in one try. The model may not be able to learn conditions that require long-term
planning or immediate action due to the large number of variables and combination
spaces they contain. The curriculum learning structure allows the model to go through
phases with distinctive difficulty differences throughout the training process. In this
context, methods have been proposed that enable the model to see the examples
it collects from the environment with a certain frequency, present the pre-designed
discrete environment designs to the model with increasing difficulty, teach a more
difficult task and enable it to achieve more success in an easier task.

With automated curriculum learning methods, the need for domain expertise in the
curriculum learning structures and the effort spent on model optimization processes are
tried to be minimized. Student-teacher neural networks working mutually with each
other, predefined methods that can instantly reduce or increase the difficulty according
to the learning outcomes of the model, and dynamically changing the conditions,
rewards and goals of the environment are the strategies frequently used in automated
curriculum learning algorithms.

During the design process of the proposed algorithm, two preliminary studies were
carried out and the effects, advantages, disadvantages and types of curriculum learning
on the basic learning process were investigated and their effects were observed. In the
first study, the adaptability of an autonomous traffic vehicle model to changing traffic
situations was tested. In order to increase the adaptation of the model, the model was
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trained in variable traffic environments during the process. It has been observed that
the vehicle model trained in a difficult, complex and highly random environment is
more successful in simpler traffic scenarios than a model trained in a simple traffic
scenario from the very beginning. In the second study, the change in the learning
ability of an autonomous vehicle driving model against variable road type and weather
conditions was observed in a realistic physics simulation. By comparing the standard
trainings of the vehicle model in different environment parameters, a route from easy
to difficult was created for the model. It has been observed that the models that have
undergone a phased training process by complying with this route information are
significantly more successful in the target (the most difficult) environment compared
to other models.

In this study, an algorithm-based strategy is proposed for the model to learn the
aforementioned difficult problems. Within the scope of the strategy, graph theory and
reward metrics were used as references. The environments used for reinforcement
learning have been made editable with variables, and an algorithm has been designed
that determines the values and orders of the variables in order for the model to have a
more stable training process. Within the scope of defined variables, all combinations
of variables that environments can have are modeled as separate environments.
These discrete environments were subjected to a difficulty ranking by comparing the
difference in variables among themselves. The rewards obtained by the model for
the possible environment change in each combination are compared, provided that the
order of learned difficulty (only going from easy to hard) is followed. Changes in
rewards are determined as the weights of edges in the generated curriculum graph.
The magnitude of the change in reward is indicative of the difference between the
model’s initial reward and the reward it received in the new environment. By running
the shortest-path algorithm on the generated curriculum graph, a route is searched for
by experiencing the least possible total reward change from a starting environment to
the target environment. The route that includes the least amount of reward change
is determined as the curriculum learning route, and the created model learns the
environment combinations in this route. At the end of the process, the model learns to
perform its task in the target environment.

In order to test the proposed algorithm, virtual game environments known in the field
were used by making them parametrized-changable with custom variables. It has been
tried not to choose environments that are known to be easy to learn. Since one of
the hypotheses put forward by the algorithm is to shorten the training time, relatively
difficult problems are chosen. The algorithm was run 10 times for each environment
independently and with fixed randomization seed to ensure reproducibility of the
results. The results are reported in such a way that the outputs of all 10 trials can
be interpreted as common.

PPO was chosen as the type of model used throughout the experiments, and deep
learning architectures and algorithms were used. Python programming language and
dedicated process servers with Ubuntu operating system were used in order to keep the
runtime as short as possible.

The test outputs show that the proposed algorithm gives the results of the normal
training process kx times and it contributes +k% to the results at the end of the process.
While the proposed method gives advantageous results over the standard method in
most of the test environments; for some environments, it showed break-even results
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with the standard method - no improvement in output. Since the parameters of the
models created during the training and the initial conditions of the environments can
be evaluated in the context of randomness, a seed variable was assigned to all the
randoms that could be seeded, and an average result was obtained over 10 trials in
order to obtain a more stable result from those that could not be seeded.

The results indicate that the curriculum outcomes of the algorithm have obvious
advantages over standard training. It is understood from this study that data
(environment)-centric innovations are as important as model-centric developments
and inventions. During the experiments, it was observed that a variable thought to
be important had no effect at all, and the variables thought to have a positive effect
had a negative effect. Thanks to the proposed curriculum learning strategy, the most
suitable curriculum can be created for the artificial intelligence model without having
an expert knowledge about the environment. This situation is an opportunity to
discover the importance of a variable that is new about the environment or whose
impact is suspected as well as creating an efficient curriculum route. The study can be
improved to generate more adaptive variable values with Gaussian-based randomized
sampling methods. The results would be expected to be similar to the contributions of
hyper-parameter optimization to other machine learning techniques.
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ÇİZGE KURAMI VE DEĞERLENDİRME BAZLI SEZGİSEL
YÖNTEMLER İLE PEKİŞTİRMELİ ÖĞRENME İÇİN

OTOMATİK MÜFREDAT TASARIMI

ÖZET

Pekiştirmeli öğrenmede, modeller ortam dinamiklerini ve onları hedefe götürecek
poliçeyi ortama keşfederek bulmaya çalışırlar. Bu amaç doğrultusunda modelleri
hedefe hızlı yoldan ulaştırabilmek için ortam bazlı veya model bazlı yardımcı
metotlardan faydalınabilmektedir. Model tabanlı çözümler daha çok modelin
mimarisini ve güncelleme hassasiyetini değiştirmeye yararken, ortam tabanlı
çözümler ortam dinamiklerini ve hedef görevin zorluğunu ayarlamayı sağlamaktadır.
Pekiştirmeli öğrenme problemlerinde modelin ortamı iyice analiz edebilmesi için
öncelikle çoğu kritik ve temel durumu keşfetmesi, ardından bütün önemli durumların
tüm olası değerlerini öğrenmesi (sömürmesi) gerekir. Fakat bir model ne kadar
keşfetmeye meyilli olursa sömürüden o kadar uzaklaşır, aynı şekilde sömürüye ne
kadar meyilli olursa da keşfetmekten o kadar uzaklaşır. Bahsedilen iki yaklaşım da
pekiştirmeli öğrenme alanındaki yoğun araştırma konularından biri olan keşif-sömürü
ikilemini çözmek adına çeşitli öneriler sunmaktadır.

Görece zor bir ortam veya görev karşısında, modelin hedef görevi tek seferde
öğrenmesi yavaşlayabilir veya imkansızlaşabilir. Model, uzun süreli planlama veya ani
aksiyonları gerektiren koşulları barındırdıkları çok sayıda değişken ve kombinasyon
uzayının genişliğinden ötürü öğrenemeyebilir. Müfredat öğrenme yapısı, modelin
eğitim süreci boyunca birbirinden ayırt edici zorluk farkları olan fazlardan geçmesini
sağlar. Bu bağlamda modelin öğrenmek için ortamdan topladığı örnekleri belli bir
sıklıkla görmesini sağlayan, önceden tasarlanmış ayrık ortam tasarımlarını modele
gitgide zorlaştırarak sunan, daha zor bir görevi öğretip daha kolay bir görevde daha
fazla başarıya ulaşmasını sağlayan metotlar önerilmiştir.

Otomatik müfredat öğrenme metotları ile, bahsi geçen müfredat öğrenme yapılarındaki
alan uzmanlığı gereksinimi ve model optimizasyon süreçlerine sarfedilen efor
en aza indirgenmeye çalışılmaktadır. Birbiriyle müşterek bir şekilde çalışan
öğrenci-öğretmen sinir ağları, modelin öğrenme çıktılarına göre zorluğu anında
düşürüp artırabilen öntanımlı metotlar ve ortama ait durumları, ödülleri ve hedefleri
dinamik şekilde değiştirmek otomatikleştirilmiş müfredat öğrenme algoritmaları
içerisinde sıklıkla başvurulan stratejilerdendir.

Önerilmiş algoritmanın tasarımı süreci boyunca iki adet ön çalışma yapılmış olup
müfredat öğrenmenin temel öğrenme sürecine olan etkileri, avantajları, dezavantajları,
çeşitleri araştırılmış ve etkileri gözlenmiştir. İlk çalışmada otonom bir trafik aracı
modelinin değişen trafik durumlarına gösterdiği adaptasyon becerisi sınanmıştır.
Modelin adaptasyonunun artırılabilmesi amacıyla model, süreç içerisinde değişken
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trafik ortamlarında eğitilmiştir. Zor, karmaşık ve rastlantısallığı yüksek ortamda
eğitilen araç modelinin daha basit trafik senaryolarında en başından beri basit trafik
senaryosunda eğitilen bir modele kıyasla daha başarılı olduğu gözlemlenmiştir.
İkinci çalışmada ise gerçekçi bir fizik simülasyonunda bir otonom araç sürüş
modelinin değişken yol tipi ve hava durumu karşısındaki öğrenme becerisinin değişimi
gözlemlenmiştir. Araç modelinin değişik ortam parametrelerindeki standart eğitimleri
kıyaslanarak model için kolaydan zora giden bir rota oluşturulmuştur. Bu rota bilgisine
uyarak parçalı bir eğitim sürecinden geçen modellerin hedef (en zor) ortamda diğer
modellere kıyasla belirgin derecede daha başarılı olduğu gözlemlenmiştir.

Bu çalışmada, bahsi geçen zor problemleri modelin öğrenebilmesi için algoritma
tabanlı bir strateji önerilmiştir. Strateji kapsamında, çizge kuramı ve ödül metrikleri
referans olarak kullanılmıştır. Pekiştirmeli öğrenme için kullanılan ortamlar
değişkenler ile düzenlenebilir hale getirilmiş, ilgili modelin daha kararlı bir eğitim
süreci yaşaması adına değişkenlerin değer ve sıralarını belirleyen bir algoritma
tasarlanmıştır. Tanımlı değişkenler kapsamında, ortamların sahip olabileceği bütün
değişken kombinasyonları ayrı birer ortam olarak modellenmiştir. Sözkonusu ayrık
ortamlar kendi aralarında değişkenlerdeki farklılık mukayese edilerek bir zorluk
sıralamasına tabii tutulmuştur. Öğrenilmiş zorluk sıralamasına uymak (sadece
kolaydan zora gitmek) şartıyla, her kombinasyondaki olası ortam değişimi için
modelin elde ettiği ödüller kıyaslanır. Ödüllerdeki değişimler oluşturulmuş müfredat
çizgesindeki bağlantıların ağırlıkları olarak belirlenir. Ödüldeki değişimin büyüklüğü,
modelin en başta aldığı ödül ile yeni ortamda aldığı ödülün arasındaki farkın
göstergesidir. Oluşturulmuş müfredat çizgesi üzerinde en-kısa-yol algoritması
çalıştırılarak bir başlangıç ortamından hedef ortama olabilecek en az toplam ödül
değişimini yaşayarak gidilebilecek bir rota aranır. Olabilecek en az miktarda ödül
değişimi içeren rota müfredat eğitim rotası olarak belirlenir ve oluşturulmuş model
bu rotadaki ortam kombinasyonlarını sırasıyla öğrenerek sürecin sonunda hedef
ortamdaki görevini gerçekleştirmeyi öğrenmiş olur.

Önerilmiş algoritmanın denenmesi amacıyla alanda bilinen sanal oyun ortamları
değişkenler ile değiştirilebilir hale getirilerek kullanılmıştır. Kolay öğrenildiği
bilinen ortamlar olabildiğince seçilmemeye çalışılmıştır. Algoritmanın öne sürdüğü
hipotezlerden birisi de eğitim süresini kısaltmak olduğundan göreli zor problemlere
odaklanılmıştır. Algoritma her ortam için 10 kez bağımsız ve sonuçların yeniden
üretilebilir olması adına sabit rastlantısallık ile çalıştırılmıştır. Sonuçlar 10 denemenin
de çıktılarının ortak olarak yorumlanabileceği şekilde raporlanmıştır.

Deneyler boyunca kullanılan modelin tipi olarak PPO seçilmiş, derin öğrenme
mimarisi ve algoritmaları kullanılmıştır. Süreç boyunca Python programlama dili
kullanılmış ve çalıştırma zamanının olabildiğince kısa olması adına işe tahsis edilmiş,
Ubuntu işletim sistemine sahip özel işlem sunucuları kullanılmıştır.

Test çıktıları önerilen algoritmanın normal eğitim sürecinin verdiği sonuçları ortalama
kx kat daha hızlı verdiğini, sürecin sonundaki sonuçlarda ise +k% bir katkı sağladığını
göstermektedir. Önerilen metot test ortamlarının çoğunda standart metoda göre
avantajlı sonuçlar vermekteyken; bazı ortamlar için standart metot ile başabaş sonuçlar
göstermiş, çıktılarda herhangi bir iyileşme alınamamıştır. Eğitim esnasında oluşturulan
modellerin parametreleri, ortamların başlangıç koşulları gibi durumlar rastlantısallık
bağlamında değerlendirilebileceği için, sabitlenebilecek bütün rastlantısallara bir
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tohum değişken atanmış, sabitlenemeyenlerden daha istikrarlı bir sonuç çıkarmak
adına ise 10 deneme üzerinden ortalama bir sonuç çıkarılmıştır.

Sonuçlar, algoritmanın müfredat çıktılarının standart eğitime göre bariz avantajlar
barındırdığını belirtmektedir. Veri (ortam) odaklı yeniliklerin de model odaklı
geliştirmeler ve buluşlar kadar önemli olduğu bu çalışmayla da anlaşılmaktadır.
Yapılan deneyler esnasında önemli olduğu düşünülen bir değişkenin hiç etkisinin
olmadığı, değişiminin pozitif bir etki yaratacağı düşünülen değişkenlerin negatif
etki yarattığı durumlar da görüldü. Önerilen müfredat öğrenme stratejisi sayesinde,
ortam hakkında uzmanlık seviyesinde bir bilgi birikimine sahip olmadan da yapay
zeka modeli için öğrenmeye en elverişli müfredat oluşturulabilmektedir. Bu durum,
verimli müfredat rotasını oluşturmanın yanısıra; ortam hakkında yeni veya etkisi
hakkında şüphe duyulan bir değişkenin önemini keşfetmek için de bir fırsat niteliği
taşımaktadır. Çalışma, Gaussian tipi rastlantısal örnekleme metotları ile daha
adaptif değişken değerleri sunacak şekilde geliştirilebilir. Sonuçların hiper-parametre
optimizasyonunun diğer makine öğrenmesi tekniklerine katkılarıyla benzer olması
beklenecektir.
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1. INTRODUCTION

Figure 1.1 : Hierarchical representation of AI, ML and DL [1]

Machine learning (ML) is a subfield of artificial intelligence (AI). It aims to create

an interpretation suitable for the data format, to understand the data and to find an

intermediate function that produces successful results for the data. Most ML methods

draw their strength from essential statistical theories and approaches. They perform

the desired tasks by creating a canonical structures according to the distribution

of variables. Throughout its development until today, ML has been used to solve

supervised problems such as regression [2], classification [3–6] and unsupervised

problems such as clustering [7, 8] and anomaly detection [9, 10].

Traditional ML methods perform good in many applications work with

structured-tabular data. But they might struggle when it comes to the unstructured

data like image, text or video. For this type of data, deep learning (DL) techniques are

preferred. While most traditional ML techniques evaluate variables within boundaries,

DL models take these variables as parameters. They pass the parameters through a

linear model, then apply a non-linear activation on them at the output, thus creating an

irreversible complex representation for the input. This way, an encoding process for
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unstructured data that traditional ML methods cannot perform is performed. Like ML,

regression and classification tasks can be performed on unstructured data with DL.

Figure 1.2 : Working principle of RL models in their basic form [11]

In addition to extracting insights from structured or unstructured data, algorithms

were designed also for decision-making in real life or simulation scenarios. This

requirement has led to the development of algorithms that will enable machines

to reach the desired target with maximum efficiency in any iterative scenario.

Reinforcement learning (RL) covers all problems and solutions that can be evaluated

within this domain. In a standard RL problem, the model can be defined as "an agent

that perceives and acts in an environment" [12]. The essential parts of a RL structure

are model, policy, reward and value function [13, 14]. The agent takes actions with

respect to its policy π . The reward indicates if the agent performs good or bad with

its taken action in the environment. The value function is an estimation of the future

cumulative reward. It is useful for evaluating the states and action selection.

In its most basic form, any RL problem can be thought of as a markov decision process

(MDP). (S,A,P,R,γ) tuple can define a MDP. In that definition; S is set of Markov

states, A is the action space of the RL agent, P is the state transition probability matrix,

R is the reward function and γ is the discount factor. γ is set between 0 < γ ≤ 1. The

next state of the agent is extracted by the probabilistic transition Eq. 2.1 determined

by the current state and action.

P(st+1 = s′|st = s,at = a) (1.1)
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In this context, the aim of an RL model is to produce an optimal action scheme (policy)

π : S→ A by taking the maximum total reward within the provided environment. The

reward function Eq. 2.2 produces a probabilistic expected value output according to

the state transition rewards.

E

[
∞

∑
t=0

γ
tR(st ,st+1)

]
(1.2)

The MDP-typed definitions mentioned above are also widely used approaches in

control theory. Most of the models created with this understanding are based on the

work of Richard Bellman. Bellman showed in his studies [15, 16] that if the problems

that can be modeled as MDP are solved with dynamic programming, the processing

load is reduced considerably. An optimization function prepared with an approach

suitable to Bellman’s methodology using value function and state transitions is used

to find an sub-optimal policy for RL agents. This optimality equation is non-linear,

and generally there is no closed form solution. However, the iterative algorithms such

as value iteration, policy iteration, Q-Learning [17] and SARSA [18] are proposed as

solutions for this problem.

In addition to the reinforcement algorithms based on iterative structured flows, there

are also approaches that the deep neural networks are used. This fusion improves

performance by taking advantage of the above-mentioned DL architectures’ ability to

derive meaningful encodings from unstructed data. One of the biggest examples of this

fusion approach is the success of the Deep Q-Network architecture on Atari [19, 20].

The above mentioned developments in the RL area have helped RL agents solve most

problems with ease. However, RL agents have always had difficulty while learning

problems that involve too many tasks or have too difficult tasks. Curriculum learning

[21] is teaching a machine learning model how to solve a difficult task. Curricula

are methodologies that people benefit greatly in their education in any domain. It

is a highly effective method that is used not only in human tasks but also in animal

training [22, 23]. The methodology reduces the difficulty of education process and

increase its quality by splitting it into phases. The most difficult problems or tasks

are not given to the student at the first stage of their education. The student must first

learn and go through the essentials of the problem. That way, each mini-problem
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the student learns will help to solve the next problem. Most of the time, the RL

agent will be having difficulties when it’s trying to learn a difficult task from-scratch

due to the task’s complexity. The curriculum approach encourages increasing the

difficulty level gradually. This way; the agent is always being challenged with the new

configurations, but not as much as in the training from-scratch scenario. In the first

study in which this method was proposed [21], it was seen that the reward convergence

was happened faster and towards higher levels. Many curriculum learning strategies

have been proposed and tested by researchers. These will be discussed in Section 1.2.

After the definitions about the curriculum, an automated version can be mentioned.

Automated curriculum learning (ACL) is the creation of curricula automatically in a

certain optimization context. Due to [24], it can be defined as:

Ob j : max
D

∫
T∼Ttarget

PN
T dT (1.3)

where PN
T represents the cumulative reward for the agent at the task T at the training

iteration N. With this pseudo formula, maximum cumulative reward at minimum

training iterations can be searched. Since it can be defined as sort of a meta-learning

process, D is the whole training pipeline (task sequence or scenario) for the agent.

Automated curriculum learning eliminates the necessary domain expertise in

curriculum learning by leaving the environment exploration to statistical methods. In

this way, it can provide faster insight and better performance in newly discovered or

waiting to be discovered domains. The studies carried out on behalf of automated

curriculum learning and their intended use will also be discussed in Section 1.2.

1.1 Purpose of Thesis

The aim-objective of this thesis is to propose a method for creating sub-optimal

curriculum scenarios for RL agents.

The proposed system aims for any RL agent to achieve maximum success in the target

setting for environment by training in the optimum order and time in given environment

setting space. During this process, the environment settings were represented as a

graph and a resource constrained shortest path algorithm was used. The edge weights
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are determined with a custom heuristic that uses the differences of episodic rewards

that the agent get in different environment settings.

As a future work, this study would define environment parameters by sampling in

a certain range based on probability distribution functions instead of defining the

environment parameter setting space manually.

1.2 Literature Review

After Bengio’s work [21], many researchers began experimenting with curriculum

methodology in all areas where ML could be applied. Studies with the curriculum

method have achieved significant success in neural machine translation [25,26], object

[27, 28] and weakly supervised object localization [29, 30] tasks. These studies have

shown that dynamically adjusting the complexity and density of samples is better than

sampling with a fixed stochastic manner.

Curriculum methods can also be divided according to their working style. In a method,

the difficulty level is estimated at the learning stage and the probabilistic distributions

of the samples are updated instantly. This approach is called self-paced learning (SPL).

This approach was applied in one study [31] by updating the sample likelihoods,

and as a result, improvements were observed. A study [32] also approached the

subject as the class imbalance problem in a classification task, defending that the

samples should be sufficiently diverse. In order to do this, they have designed

prerequisites to ensure that samples are constantly taken from different parts of the

pictures. They called it balanced curriculum learning (BCL). With the self-paced

curriculum learning (SPCL) proposed by a study [33], these two methods are being

used jointly. As a result, pre-defined conditions and difficulty detection processes are

carried out together. Another approach suggests modifying task descriptions rather

than sorting samples in the context of a challenge. Thus, as the model performs

better, the target task gets harder or more detailed. In a study [34], it is encouraged

to reduce the defined dropout rate within the network. It may also help to solve

the exploration-exploitation dilemma in reinforcement-learning. This can be called

Progressive Curriculum Learning (PCL). In the teacher-student approach, while the

student network learns to solve the network task, the teacher network tries to learn

the optimal parameters required for the student network. This approach [35] was
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first proposed for reinforcement-learning problems. Then it began being used in other

domains. In addition to the curriculum understanding that goes from easy to difficult,

hard-example mining [36] and anti-curriculum [37] approaches that prioritize difficult

examples and high-noise sounds in speech recognition tasks have also been tried.

ACL approaches can be used to change the problem in more than one direction.

Prioritized experience replay [38] can be used in RL problems with strict task

definitions to improve sample efficiency. In scenarios where job description is too

difficult or rewards are too sparse, it is very difficult for the agent to learn from scratch

on its own. To prevent this, teacher-student architectures can be used to gradually

change task difficulties. In one study [39], the agent was trained with a scenario

that progressed from easy mazes to difficult mazes, and better results were obtained

than training from scratch. In a study [40], it has been observed that starting the

robot actuator close to the terminal state gives good results in robotic tasks. Thus,

the proximity to the target parameter was determined as the axis of difficulty. The

agent learns the basics of the mission by starting at positions close to the target. In

the later stages, it is gradually moving away from the target and converges to more

difficult tasks faster. This approach can also be called reverse-curriculum. In problem

definitions that have excessive sparse rewards, there are also studies [41–43] that define

intrinsic rewards and make the problem more learnable for the agent.

ACL methods can be used to modify the initial state, environment, reward, task

definitions, and opponents for multi-agent settings. Within the scope of my work, only

the work done within the scope of environmental change and transition modification

will be mentioned.

It has been shown that teacher-student networks increase the performance of Minecraft

maze solvers [39] and Sonic the Hedgehog agents [44]. At the same time, the

Procedural Content Generation algorithm [45] has been proposed to create wider

combinations of tasks. With this algorithm, successful results were obtained [46]

on a robot hand that solves rubik’s cube. In multi-target environments, Hindsight

Experience Replay (HER) [47] recommends recreating trajectories collected with a

specific task-goal to a different task. With this algorithm, the specific target state is
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replaced with a state on the path to the target. In this way, the agent is enabled to learn

the problem piece by piece by determining the parts of the solution as the sub-targets.

1.2.1 Research Gap

The methods described in the aforementioned studies and algorithms are not

repeatable, interpretable and simply applicable. All of these features cannot be

achieved with a single study. Some are designed for just a single observation type,

some for a single environment, and some for a single task type. A method that works

with a common parameterized implementation format is not proposed.

1.3 Hypothesis

A curriculum can include many parameters and processes in the context of

reinforcement learning. In recent years, many successful algorithms and techniques

built upon representing the problems as a graph structure. We modeled the curriculum

process as a graph, then set the edge weights as the reward difference of the same

agent in these nodes (environments) that the given edge is connected. Considering this

structure, if the shortest path algorithm is run on the potential paths the agent would

go, it will select the path where the agent will collect the smallest (biggest in negative)

reward difference. This means that the agent will be getting more and more challenged

in our context. We built a hypothesis with keeping these in mind.

Hypothesis 1: The automated curriculum algorithm will reveal previously unnoticed

levels of difficulty and transitions. The scenarios when one parameter makes the

environment harder while the other makes is easier will be an important learning step

for the reinforcement learning agent.

Hypothesis 2: The dynamic and independent parameter changes that brought by our

proposed algorithm will give better results than a random parth or a curriculum process

that supervised manually.
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2. BACKGROUND

2.1 Reinforcement Learning

Traditional reinforcement learning process is mostly based on Markov Decision

Processes (MDP).

A MDP is defined by the tuple (S,A,P,R,γ), where γ is the discount factor, R is the

reward function, S is set of Markov states, A is the action space of the agent and P is

the state transition probability matrix. The discount factor γ is set between 0 < γ ≤ 1.

The next state of the agent is governed by the probabilistic transition determines by the

current state and current action (see Eq. 2.1) The main purpose of the RL agent is to

get maximum total reward in a long term (Eq. 2.2) by interacting with the environment

by choosing an optimal policy π : S→ A.

P(st+1 = s′|st = s,at = a) (2.1)

E

[
∞

∑
t=0

γ
tR(st ,st+1)

]
(2.2)

The main objective of Q-Learning is to compute the value function Q(s,a), which

determines the long term total reward of taking action a at state s. Hence if the optimal

value function is determined, optimal policy π can be obtained by taking the action

a = argmaxa(Q(s,a)) at state s. Classic Q-learning algorithm iteratively updates the

the value function estimate by applying the update in Eq. 2.3, where αk is the learning

rate.

Whether or not if taking an action in a state is good or bad is evaluated by Q-learning

through action value function Q(s,a). Q(s,a) for all potential actions and states are

stored in memory table Q[s,a]. New states and the reward R(s) for that particular action

have been collected such that, the succeeding action will be the highest Q(s′,a′) valued
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action in Q[s,a]. The action value function can be calculated as shown in Equation (2.3)

where γ is the discount factor and αk is the learning rate.

Q(s,a)← (1−αk)Q(s,a)+αk(R(s)+ γ ∑
s′

max
a′

Q(s′,a′)) (2.3)

There might be situations such that the continuous action states or actions-spaces can

take too much space on memory, this will increase the load on computation of Q.

2.1.1 Policy-wise types of reinforcement learning

In reinforcement learning, agents take actions in an environment to maximize their

cumulative rewards in an episode that consists of finite number of steps. Agents

tune their policies with the penalties or rewards they get. There are two kinds of

reinforcement learning algorithm in terms of policies; on-policy and off-policy.

2.1.1.1 On-policy reinforcement learning

In on-policy reinforcement learning, the policy used for updating the target model and

the policy used for selecting the actions (behavior model) are the same. In off-policy

reinforcement learning, the policy used for updating the target model and the policy

used for selecting the actions (behavior model) can be different. Updating the model

only requires specific inputs like state, action, next state and reward.

2.1.1.2 Off-policy reinforcement learning

In off-policy reinforcement learning, the target policy may be deterministic, while the

behavior policy can act on the sampled states from all possible past scenarios. This

flexibility enables training the algorithm using previous experiences. In this context,

all collected iteration data are stored in one place. In each training iteration, a certain

amount of data is sampled from this collected data. This set where we sample the

experience is called the buffer, and the sampled data is called batch.

2.1.2 Policy gradient reinforcement learning

In policy gradient, policy is usually defined through a parameterized function, like

a neural network. The generalized reward function for a policy gradient learner is

defined as:
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J(θ) = ∑
s∈S

dβ (s) ∑
a∈A

πθ (a|s)Qπ(s,a) (2.4)

In Eq. 2.4, dβ (s) is the distribution of the behavior policy β . Without using the

behavior policy, the value function Qπ can be calculated only by the target policy.

The difference at using π or πθ at decision-making stage is what makes an algorithm

on-policy or off-policy.

As mentioned before, there is a rapidly increasing complexity in the definitions of

continuous space state and action due to the expansion of the probability space. This

complexity can be handled much better with policy-based methods. By using gradient

ascent, θ parameter can be updated in the direction of the gradient ∇θ J(θ) and

converge towards the policy that brings the highest reward.

2.1.2.1 Execution of policy gradient

∇θ J(θ) is complicated to calculate because it depends on both the choice of action and

the stationary distribution of states. Given that the environment is not generally fully

known, it is difficult to estimate the impact on the state distribution by a policy update.

∇θ J(θ) = ∇θ ∑
s∈S

dπ(s) ∑
a∈A

πθ (a|s)Qπ(s,a) (2.5)

The original equation (equation 2.5) for a policy gradient execution includes taking

derivative for state distribution d.

∇θ J(θ) ∝ ∑
s∈S

dπ(s) ∑
a∈A

∇θ πθ (a|s)Qπ(s,a) (2.6)

By using policy gradient theory, we can get rid of the gradient computation cost for

state distribution. The result of equation 2.6 will be proportional with equation 2.5.

The full proof can be seen in Sutton’s work [48].

2.1.3 Trust region policy optimization (TRPO)

Applying very large differences during the update of the policy may destabilize the

process. Trust Region Policy Optimization (TRPO) [49] tries to solve this problem by
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applying KL divergence [50] constraints on the size of policy update. While doing

off-policy update, the behavior policy β is different from optimized target policy

π . The objective function estimates the cumulative advantage over state distribution

and actions. Meanwhile, importance sampling is compensating the error between

ground-truth data state distribution and the training data state distribution. Normally,

the function is like in equation 2.7:

J(θ) = ∑
s∈S

ρ
πθold (s) ∑

a∈A
πθ (a|s)Âθold(s,a) (2.7)

When importance sampling is applied, it forms as in equation 2.8:

J(θ) = ∑
s∈S

ρ
πθold (s) ∑

a∈A
β (a|s)πθ (a|s)

β (a|s)
Âθold(s,a) (2.8)

When it’s written in expectation format, it forms as in equation 2.10:

J(θ) = Es∼p
πθold ,a∼β

πθ (a|s)
β (a|s)

Âθold(s,a) (2.9)

Since the true rewards are not known, the reward (advantage) estimation is written

as Â. For the definition in equation 2.10, the behavior policy β and parameters of

the target policy just before the update πθold are different because of the off-policy

routine. If it’s going to run in on-policy manner, the policies should be same. But many

rollout workers and optimizators running in parallel can cause the behavior policy to

be outdated. To solve that problem, TRPO labels the behavior policy.

J(θ) = Es∼p
πθold ,a∼πθold

πθ (a|s)
πθold(a|s)

Âθold(s,a) (2.10)

After the behavior policy β denoted as πθold , the TRPO can control the magnitude of

the ratio of the new and the old policies. This brings a trust region on the change

amount of model’s policy. TRPO enforces the distance between the old and the new

policies to be small enough (δ ) with KL-divergence as in equation 2.11:

Es∼p
πθold [DKL(pπθold (.|s)||pπθ (.|s)]≤ δ (2.11)
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Thus, by limiting the size of policy updates, policy changes are prevented from

diverging beyond a certain threshold.

2.1.4 Proximal policy optimization (PPO)

Proximal Policy Optimization (PPO) [51] is an easing application on one of its

predecessors, Trust Region Policy Optimization (TRPO). The probabilistic ratio in

TRPO equation 2.10 can be written as:

rp(θ) =
πθ (a|s)

πθold(a|s)
(2.12)

After the new functionized variable, the objective function of TRPO in equation 2.10

can be written as:

JT RPO(θ) = Es∼p
πθold ,a∼πθold

rp(θ)Âθold(s,a) (2.13)

If there is no limitation applied on the distance between θ and θold , maximizing JT RPO

would cause instability due to large optimization steps. PPO tries to force r(θ) to be

in a determined interval [1− ε,1+ ε]. It clips the ratio r(θ) for the values out of the

determined range.

If the architecture shares the parameters between actor and critic networks, the

objective function should be changed with the addition of error and entropy terms

as in equation 2.14:

JCLIP′(θ) = E[JCLIP(θ)− c1(Vθ (s)−Vtarget)
2 + c2H(s,πθ (.))] (2.14)

where c1 and c2 are both hyperparameters for the PPO algorithm.

2.2 Deep Learning

Deep learning is a sub-field of machine learning based on the working principle of

the human brain. Deep learning algorithms operate on a principle similar to the way

neurons in the nervous system communicate with each other.
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Figure 2.1 : An exemplary deep learning model architecture [52]

As can be seen in the Figure 2.1, deep learning models consist of layers and discrete

processing units in each layer called nodes. Nodes in each layer interact separately

with all nodes in the next layer. At the end of each layer, a non-linear activation

function is applied. Thus, a complex representation is obtained in which each value

in the input and all the values generated from these values have separate importances

called weights. The most important feature that distinguishes deep learning models

from traditional ML methods is this automatic feature-extraction process.

2.2.1 Gradient Descent

Gradient descent is an algorithm that approximates the values that the parameters of a

particular function must take in order to obtain the minimum value in an error metric.

The parameters of deep learning models are updated with gradient descent. When

used, it makes the difference the most when needed parameters cannot be calculated

analytically. A gradient descent formula which updates the θ parameter with the

learning rate α according to an error metric named E, can be defined as follows:

θ = θ −α
δ

δθ
E (2.15)

2.3 Graph Theory

In essence, graph theory is the study of the properties and applications of

graphs-networks. A graph consists of vertices (also called nodes) connected by graph
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edges (also called links). Graphs are one of the main subjects of discrete mathematics

research.

2.3.1 Undirected graph

Figure 2.2 : Undirected graph with three nodes and three edges [53]

Undirected graphs like in Figure 2.2 includes the information about the connectivity

of each node pair. Operating on undirected graphs generally depends on whether there

is an edge between two nodes or not.

2.3.2 Directed graph

Figure 2.3 : Directed graph with three nodes and four edges [54]

Directed graphs like in Figure 2.3 represent the connection between two nodes,

including direction information. In this context, the bi-directional edge in the graph

in Figure 2.3 counted as two separate edges. By looking at this kind of graphs, the

direction of the information flow can be determined, therefore more customized and

realistic systems can be designed.
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2.3.3 Weighted graph

Figure 2.4 : Weighted graph with three nodes and four edges

In a graph, the connection between each pair of nodes may not have the same

importance or impact. In such cases, specific links or directions must be able to

be weighted differently. In this way, more cost-efficient and optimal results can be

obtained in processes such as route selection and planning.

2.3.4 Dijkstra’s algorithm

The Dijkstra’s algorithm is an algorithm that finds the shortest path between nodes in

a graph. This was conceived in 1956 by Edgar W. Dijkstra [55]. The algorithm uses

the weighted graph structure to find the shortest path. It iteratively discovers the least

resource-consuming (edge weight) route from the starting point to the destination point

by using dynamic programming. The algorithm is widely used in route-planning tasks.

The original version of the algorithm finds the shortest path between two given nodes.

But modern versions finds the shortest paths between a fixed node and all the other

nodes. Dijkstra’s algorithm uses optimized loops with classical data structures. This

algorithm is different from well-known minimum spanning tree algorithms. Because

the shortest path between two nodes may not include all nodes in the graph.
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The pseudo-code of Dijkstra’s algorithm is given in Algorithm 1:

Algorithm 1: Dijkstra’s Algorithm
G = graph
s = vertex
for each vertex v ∈VG do

dist[v]← ∞

parent[v]←UNDEFINED
end
dist[s]← 0
Q←VG
while Q 6= /0 do

u← EXT RACT −MIN(Q)
for each edge e = (u,v) do

if [v]> dist[u]+weight[e] then
dist[v]← dist[u]+weight[e]
parent[v]← u

end
end

end
H← (VG, /0)
for each vertex v ∈VG, v 6= s do

EH ← EH ∪{(parent[v],v)}
end
return H,dist
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3. PRELIMINARY STUDIES

In the preliminary studies to be mentioned, custom PyGame Environment and SimStar

simulators developed by Eatron Technologies were used; which are research and

product oriented, respectively. Related simulators will be mentioned in related studies.

3.1 Development of a Stochastic Traffic Environment with Generative

Time-Series Models for Improving Generalization Capabilities of Autonomous

Driving Agents

The main contribution in this work is the development of a data-driven traffic simulator,

where I simulate trajectories of the surrounding traffic by using a generative adversarial

deep neural network (GAN) trained on real traffic data. Details about the test

environment are given in Appendice I.

Figure 3.1 : Performance check of the trajectory generator (with few vehicles)
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In order to make the work experienceable, a 2D linear traffic environment was created

through the PyGame [56] library. While the default vehicles are driven by MOBIL [57]

and IDM [58] algorithms, the ego-vehicle was managed by the reinforcement learning

model designed within the scope of the study.

Figure 3.2 : Generated Trajectories in the Simulation

The generated randomized trajectories in Figure 3.2 resemble real life scenarios and

thus the developed simulator provides a much richer and realistic environment for

training RL agents.

An RL agent has been developed for automated lane changing that is suitable

for training on both GAN based and rule-based simulators. To train an agent in

environment led by Social-GAN (SGAN) [59]; The training process was carried out

on IDM traffic first and then SGAN traffic. A simple and manual curriculum process

was provided, allowing the agent to adapt to a more realistic and complex environment

faster than it would normally be.

Figure 3.3 : Comparison of reward in two different training phases

20



As can be seen in Figure 3.3, as a sign of curriculum, the agent experiences a

catastrophic reward decrease in the first environment change, then quickly begins to

adapt to the new environment settings.

After initialization of the simulation environment, two types of RL agents named

AgentIDM and AgentGAN have been trained on deterministic traffic scenarios that

have been led by MOBIL and IDM algorithms and uncertain traffic scenarios that

have been generated by the trajectory generator network, respectively. AgentIDM has

been trained for 10,000,000 iterations. After that, AgentGAN has been trained for

3,000,000 iterations in the uncertain traffic environment with using transfer learning

with curriculum manner by taking the AgentIDM’s weights in the initialization step.

3.1.1 Results

Table 3.1 : Number of crashes on TrafficIDM

Hard Soft
Models Crash Crash

AgentIDM 19 2
AgentGAN 9 0

Table 3.2 : Performance of agents on TrafficGAN

Normalized Mean Reward
Models (% MOBIL)

AgentIDM 5.21% −22.33±100.66
AgentGAN 114.82% 33.62±95.19

The results show that RL agents trained on GAN-based traffic have significantly better

generalization capabilities compared to agents trained on rule-based traffic simulators.

To have a fair comparison between the trained agents, The agents have been tested

in 2 different types of environments together as shown in Tables 3.1 and 3.2. The

first environment, TrafficIDM, is a static environment where the other actors in the

environment do not make complex decisions such as changing their lanes. The

second environment TrafficGAN, is based on the non-deterministic trajectory generator

network where other agents acts in a similar way with real traffic scenarios, which

can cause them to make unnecessary decisions. Two agents have been compared at
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the same time with the MOBIL in the TrafficGAN in order to have a fair comparison

between two agents. The results in Table 3.2 have been obtained after 1000 sample

simulations.

According to Table 3.1; in a relatively certain and non-complex traffic, even though

AgentIDM has been tested in the environment that it has been trained, it stays behind of

the AgentGAN. Also AgentGAN does relatively good considering it hasn’t been trained

on the same environment. According to Table 3.2; in a complex and uncertain traffic,

AgentIDM obtains less rewards than the MOBIL algorithm since it hasn’t been tested

in the environment that it has been trained. AgentGAN does better than MOBIL and

AgentIDM since it has observed the uncertain and faulty behavior situations during its

training phase.

From the Tables 3.1 and 3.2, It can be claimed that an RL agent that has been

trained in a static non-complex environment can not learn the underlying dynamics

and can not adapt to uncertainty of the real-world applications where surrounding

vehicles make complex or faulty decisions such as lane changing, instant-acceleration

or instant-slowing. In these type of environments, an agent that has been trained on

complex and uncertain scenarios can avoid crashes and make safer decisions.

3.1.2 Conclusion

With this study, an agent was trained with the curriculum strategy with a partial

change of difficulty. The training process has been taken to environments with higher

difficulties compared to the target environment. Thus, the usefulness of the concepts

of achieving faster convergence with an increase in forward difficulty (curriculum) has

been proven, as well as the fact that the agent trained in more difficult tasks than the

target will be more successful in the target task (reverse-curriculum).

3.2 Investigating Value of Curriculum Reinforcement Learning in Autonomous

Driving Under Diverse Road and Weather Conditions

The main contribution of this work is an in-depth study on impact of different

curricula on deep reinforcement learning for autonomous driving in a realistic driving

simulator. We develop a structured environment, where the adversity of weather

conditions and road complexity can be tuned independent from each other. We
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setup several different curricula, where the training starts from simple weather

conditions and road geometries, and then ramps up to more complex road and weather

conditions. Evaluation results show that agents trained using curriculum reaches

superior performance using much lesser samples, compared to agents that are directly

trained in complex environments.

All training and evaluation procedures applied in this work are implemented

in "SimStar" simulation environment. In the environment, custom roads with

various traffic, track, and weather conditions can be generated easily for more

realistic-comprehensive training and evaluation of RL agents. This engine is

responsible for 3D visualization of the environment and creating accurate vehicle

dynamics. Different types of vehicles (sedan, SUV, truck etc.) can be added to the

environment. Road conditions such as tar, dirt, damage can be implemented on the

tracks to accurately resemble real-world counterparts. Details about the environment

are given in Appendice J.

We describe the details regarding curriculum implementation in this section. All agents

are trained with the Soft Actor Critic (SAC) [60] algorithm in different scenarios and

conditions. In this context, the agent is firstly trained exclusively in different weather

conditions, which are: "clear", "rainy" and "snowy".

Figure 3.4 : Road geometries used in simulation setup.

Another curriculum parameter is the geometry complexity of the track. The track that

has the most complex geometry is the hardest track to be learned by the agent. All

roads in the simulation are 10 meters wide and consist of 2 different lanes. Three

tracks in total are used. As it can be seen on Figure 3.4, they are;
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• Straight Road

• U-Turn Road

• Complete Circuit Race Track

To increase the variety of the curriculum learning, weather conditions are added onto

these tracks for more realistic settings. The agents which are trained on different

weather conditions (such as rain and snow) would learn unique driving capabilities.

Note that clear, rainy, and snowy weather conditions are chosen in their maximum

value for noteworthy atmospheric ambiances and their effects on the tracks. As a

consequence, the curriculum reinforcement learning methodology is implemented on

"Weather Condition" and "Track Type" combinations.

Figure 3.5 : Three example hand-made curriculum scenarios.

Each variable set of curriculum training scenarios can be evaluated as separate

dimensions in a space. In this study, it can be concluded that there will be 2 dimensions

in the curriculum space. The transition process after each curriculum training phase

will take place in the form of a transition from one point in the space to another. Figure

3.5 can be examined as a representation of the mentioned space and transitions.
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Figure 3.6 : Representation of a full curriculum training scenario.

An example and a complete curriculum scenario can be seen on Figure 3.6. The

agent observes the phases (Straight, Clean), (U-turn, Clean), (Straight, Rainy), (U-turn,

Rainy), (Complete, Snowy) respectively. In the example design, the agent is trained

only 1 iteration on each phase and transferred to the other phase immediately. In the

variations to be presented in the context of the proposed methodology, these iteration

numbers will be in thousands. Agents can be thought of as spawning back to the

beginning of the current phase at the end of each iteration. When the iteration number

of each phase is exceeded, the transition to the next phase will be executed.

Table 3.3 : Training Combinations

Curriculum
Scenarios Phase 1 Phase 2 Phase 3

Scenario 1 Straight (C) U-Turn (C) Race Track (C)
Scenario 2 U-Turn (R) Race Track (R) Race Track (C)
Scenario 3 Straight (R) Race Track (R) Race Track (S)
Scenario 4 Straight (C) Race Track (R) Race Track (S)
Scenario 5 Straight (C) Straight (S) Race Track (S)

The complete information about training scenarios can be found in Table 3.3. A total

of 5 different curriculum scenarios are implemented. Letters C, R and S corresponds

to clear, rainy and snowy weather conditions respectively. These route orders are
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determined by examining the training results without curriculum learning. Most of

the cases, the routes are chosen to be ordered from easiest scenarios to hardest. The

order of curriculum learning is crucial as the agent has to acquire useful experience

in the consecutive tasks [61]. It is seen that, the hardest scenario for the RL agent to

solve is complete track scenario with snowy weather condition. So, the goal is to train

the agent starting from the easiest track to be learned to the hardest track. To do so,

specific training orders in Table 3.3 are determined where agent starts from the simple

environment and finishes at more complex one. By doing so, the agent will gather

convenient experiences throughout the ordered training tracks.

The curriculum training order for each route is illustrated with ascending enumeration.

As stated in [61], the quality of the curriculum learning task is directly dependent on

the training order quality of the tracks.

3.2.1 Results

At first, the non-curriculum training procedures are carried out on 9 base tracks (3

weather scenarios for 3 road types) as illustrated in Table 3.3. In baseline trainings, the

iteration limits are set according to track difficulty levels. The straight road scenarios

are trained for 75000 iterations, U-Turn scenarios are trained for 50000 iterations

and the Circuit Race Track scenarios are trained for 200000 iterations. After the

baseline non-curriculum trainings, a 200000 iteration limit is decided for the training of

curriculum scenarios. In each of 5 different curriculum learning scenarios, 3 different

road and weather combinations are used. The first step of all of these curriculum

scenarios is one of the baseline trainings that are conducted.

In the Figure 3.7, it is possible to see the complete picture of the curriculum learning

results. There are 5 rows in the figure and each one of them represents a separate

curriculum scenario. Each training phase executed with 3 different pre-defined seeds

for the sake of stability. The left side of the figure shows the ending point of the

curriculum scenario and right side shows the baseline and curriculum training results.

The red lines in the right side shows the baseline training results for that particular

curriculum scenario and the black one shows the curriculum training results. Each

weather condition is represented with a different color. The clear weather is shown

with green, the rainy weather is shown with blue and the snowy weather is shown with
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Figure 3.7 : Comparative curriculum learning results.

celeste color. In the same fashion, all road types are shown with different markers and

they can be seen in the upper part of the Figure 3.7.

Up until this point, it is shown that the curriculum learning significantly boosts the

performance of the trained RL agents and aids them to learn the underlying dynamics

of the different weather and road combinations. In addition to this advantage, it is

observed that curriculum learning also decreases the training times significantly.

The best results are achieved in a curriculum scenario where the best performing

non-curriculum agent used directly in the highest complexity environment. In nearly

all of the results, the curriculum learning yielded greater results compared with the

non-curriculum results except one case. Using a bad performing non-curriculum agent
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on a curriculum learning scenario severely hurt the training process and decreased the

reward compared with the non-curriculum scenario. This shows that it is crucial to use

a good baseline agent in all curricula to achieve better results. The results are affected

more by the weather changes than the road complexity.

3.2.2 Conclusion

In this work, it is showed that training a deep reinforcement learning agent with

curriculum learning strategy increases the performance and decreases the overall

training time for an autonomous driving agent trained on different weather and road

conditions. These results are concluded by developing a structured reinforcement

learning system with different road types and weather conditions. The curriculum

scenarios on this work consist of different road geometries and weather combinations.

It is illustrated that training an RL agent on the relatively simple environment then

continuing the the training process of this agent in a more complex environment

resulted in a performance boost. During the training process, all parameters kept

constant in order to make sure the validity of the experiments. The experimental results

demonstrated that an RL agent trained with a curriculum learning structure performed

significantly better than an RL agent trained from scratch without a curriculum

approach.
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4. PROPOSED ALGORITHM

The proposed algorithm aims to automate the creation phase of curriculum learning

scenarios. By training the agent in defined environment states separately, it makes a

relative difficulty difference estimation between states and creates the curriculum-route

where the reinforcement model can learn the target with minimal effort. The algorithm

runs an iterative optimization process using the directed-graph structure and Dijkstra’s

algorithm.

4.1 Step-by-Step Explanation of Algorithm

4.1.1 Prerequisites for the algorithm

In order for the algorithm to work, parameters that significantly change the operation

of the target environment must first be created. Then, a probability set should be

defined for these parameters. For the sake of exemplary explanation; A parametrized

environment named "DummyEnv" will be considered. It will be assumed that

DummyEnv has 2 environment variables named "A" and "B". These variables must

affect parameters that greatly affect the model’s ease of completing tasks in the

environment. The parameters are given in a mixed order in order to indicate the sorting

feature of the proposed algorithm.

Table 4.1 : Parameter combinations for DummyEnv

A B

30 8
30 5
30 10
50 8
50 5
50 10
40 8
40 5
40 10
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4.1.2 Determining the direction of difficulty

The algorithm tries to understand whether the difficulty of the environment increases

or decreases according to the change of the value for each variable separately. In order

to do this, a user-specified length of training (preferably short enough to understand

the solvability of the environment) is performed in all parameter combinations. It will

be assumed that training takes place on the parameter combinations in Table 4.1 and

the resultant rewards in Table 4.2 are received. Rewards are the average of the episodic

rewards received as a result of the last n episode in the training process.

Table 4.2 : Training results of each parameter combination for DummyEnv

A B Reward

30 8 80
30 5 65
30 10 100
50 8 100
50 5 75
50 10 120
40 8 70
40 5 70
40 10 105

After the individual reward results for each combination are collected, the algorithm

locks each parameter separately.

Table 4.3 : Mean rewards for parameter ’A’

A Mean Reward

30 81.67
50 98.34
40 83.33

Table 4.4 : Mean rewards for parameter ’B’

A Mean Reward

8 85
5 66.67

10 108.33
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After the mean rewards are calculated, the relationship between the parameter values in

the context of difficulty is derived at a basic level. The algorithm orders the parameter

values according to their mean rewards from the highest to the lowest (from easiest

to hardest). The ordered states of the parameters in the given example would be as

follows:

• A→ [50 40 30]

• B→ [10 8 5]

4.1.3 Differential evaluation

It will be assumed that the target task is to solve the DummyEnv on "the most difficult"

parameters. Target states can be specified in the algorithm, this is valid for the given

example. Each parameter will change its values from easy to difficult with their index

numbers. This also provides convenience in terms of representation and data structure

management. The new forms of values will be displayed as follows:

• A→ [50 40 30]→ [0 1 2]

• B→ [10 8 5]→ [0 1 2]

From now on, each combination will be shown with its index numbers (e.g.

combination [A : 50,B : 5] will be shown as [0,2]). The next step is to model the

combinations with difficulty information as a graph in order to create curriculum

scenarios. For ease of representation, two values of each parameter will be considered.

Figure 4.1 : Curriculum graph for DummyEnv

31



Curriculum graphs (as in Figure 4.1) are being created with some limitations, as

Dijkstra’s algorithm can cause problems with graphs containing cycles. These

limitations are as follows:

• Paths leading from the current node to the more difficult node are ignored

• In order to avoid a cycle, a scenario flow can only be from easy to difficult

As it can be seen in Figure 4.1, a probabilistic flow from easy to difficult combinations

has been established according to the mentioned limitations. Let’s assume that for the

parameter combinations shown in Figure 4.1, k evaluation episodes with a fixed seed

is run. The values shown in Table x will be assumed to be the run evaluation results

for the mentioned combinations.

Table 4.5 : Mean evaluation rewards for parameter combinations

Combination Evaluation Reward

[0,0] 100
[0,1] 80
[1,0] 75
[1,1] 40

After this phase; the model trained in each combination will be evaluated in the

combinations they can reach with the edges from their state node. The weight of the

edge between these two combination nodes should represent the difference in difficulty

between the two combinations. Let’s assume that the function named Eval(M,x)

returns the evaluation reward of the specified reinforcement learning model in the

specified combination, given the reinforcement learning model is called M and the

environment parameter combination is called x. Assume that the model is trained

and evaluated in environment a, and in one of the environments it can go to in the

curriculum scenario is environment b. The negative change in evaluation reward

will be an indirect metric indicating how much the model is being challenged. The

algorithm sets the weight of the edge between nodes representing combinations of a

and b as in equation 4.1:

Wa→b = Eval(M,a)−Eval(M,b) (4.1)
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Suppose a situation like:

• Model trained in combination [0,0].

• Model evaluated in combination [0,0], mean evaluation reward is 100

• Model evaluated in combination [0,1], mean evaluation reward is 65

If the above cases are known, the edge weight can be calculated according to the

equation 4.1 and the relevant curriculum graph can be filled with the calculated value:

W[0,0]→[0,1] = 100−65 = 35 (4.2)

Figure 4.2 : Placement of edge weight for the curriculum graph of DummyEnv

When equation 4.1 is applied for all edges, it will be seen that the result in Figure 4.3

is obtained:

Figure 4.3 : All edge weights of the curriculum graph of DummyEnv
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4.1.4 Setting up the curriculum path

The task of finding the optimal path in the graph is approached as a shortest path

problem. In fact, the edge weights between nodes indicate how much the model is

being challenged when moving in the specified direction between each pair of nodes.

Therefore, the model that goes from the specific combination to the target combination

with the least cumulative edge weight, theoretically learns the target environment with

the least challenge.

If we express a curriculum learning scenario that includes points a, b, and c

respectively as Ca→b→c ; computing the cumulative challenge of all possible

curriculum scenarios based on the edge weights in Figure 4.2 yields the following

results:

C[0,0]→[0,1]→[1,1] = 35+45 = 80 (4.3)

C[0,0]→[1,1] = 85 (4.4)

C[0,0]→[1,0]→[1,1] = 45+45 = 90 (4.5)

The same results will be obtained when the paths calculated with the naive method as

an example are calculated with Dijkstra’s algorithm and it will be seen that the shortest

path is C[0,0]→[0,1]→[1,1]:

Figure 4.4 : The shortest path for the curriculum graph of DummyEnv
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4.1.5 Executing the training on the specified curriculum path

A naive and bilateral conditioning process has been determined for the education on the

determined curriculum path. If the vanilla training processes of the model in the first

stage take a maximum of k iterations and the selected environment reaches R reward

means that the environment has been learned by the model; The trigger to move to the

next phase in curriculum training is defined as follows:

• If the current curriculum phase already took k iterations

• If the model reached R mean reward in the current environment parameter

combination

4.1.6 Comparing the methodology with vanilla training

Since k training iterations can be expected for each curriculum stage in the worst

conditions, a training up to nk iteration length can be encountered in an n-phase

curriculum training. In such a case, the existing k iteration-trained vanilla models

will not work for a sound comparison. Let’s assume that the curriculum learning

process takes t iterations and t is defined as 0 < t < nk. If a separate model is

trained from-scratch throughout t iterations in the environment with target parameter

combination, it can be compared with the curriculum learning model.

At the end of the process, the two models can be compared with the mean rewards

of the evaluation rounds started with the same seed and the instant training reward

differences with each other on a specific training iteration.

4.2 Complexity of the Proposed Algorithm

We can think of the algorithm in two different ways, with training and evaluation steps

in terms of the operations it performs. Assume that there are n environment parameters

fed to the algorithm and each parameter can have k different values. Considering the

training stages, the algorithm includes:

• For determining the direction of difficulty: kn trainings

• For evaluating each model on other parameter combinations: (kn)× (kn − 1)

evaluations
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Thus, the exact complexity for the proposed algorithm would be:

O(kn) trainings+O(k2n) evaluations (4.6)

Since training phase is known to take much longer than evaluation phase, the

complexity of the algorithm can be described in its simplest form as O(kn). The

complexity for the execution of Dijkstra’s algorithm is ignored as it represents much

lesser execution-time when it’s compared to the training and evaluation phases.

4.3 Pseudo Code of the Proposed Algorithm

Algorithm 2: Proposed Algorithm
P = Available environment parameters
Sc = Parameter combination space
for each parameter combination c ∈ Sc do

calculate vanilla training reward Rc for c
end
for each parameter p ∈ P do

Calculate mean vanilla training reward Mp for p
end
Sort each p in P according to their respective mean rewards
Create a graph G
Add each c ∈ Sc as nodes to G
for each parameter c ∈ Sc do

for each parameter c2 ∈ Sc do
if c2 occurs later than c in the sorted reward array then

Rc← Evaluation reward of the agent trained in c at c
Rc2 ← Evaluation reward of the agent trained in c at c2
Add edge c→ c2 to G with weight Rc−Rc2

end
end

end
Find the shortest path from the easiest parameter combination to the target
combination Ts in G

return Ts
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5. TESTING ENVIRONMENT

The hardware and software details of the environment in which the algorithm results

are tested are given in Appendix C1 and Appendix C2, respectively.

5.1 Infrastructure

The tests of the proposed algorithm were performed in various gaming and physics

simulation environments created with OpenAI’s Gym [62] environment manager.

Gym is a toolkit for developing and comparing reinforcement learning algorithms.

It contains the known problems in the field and the most popular titles of the gaming

world, as seen in Figure 5.2.

5.1.1 Functions

Environments created in the Gym are expressed as a class object. Each object has the

following functions.

5.1.1.1 Render

It is the command to get instant visual or comprehensible output from the environment.

It can be modified, turned on and off as desired, and it is very useful for debugging,

especially in environments with physics simulation.

5.1.1.2 Step

Figure 5.1 : The agent-environment loop in Gym [63]
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It is the command that is used to take the action specified as input in the environment

and to request post-action returns. It does not have a customizability, it progresses

the environment simulation by a time iteration each time it is called. The amount of

progress can be shaped and changed according to the structure of the code written by

the user.

The function has a design which basically fits the default interaction model (in Figure

5.1) in reinforcement learning. The function transmits the action from the model to

the environment, and as a result, the values returned from the environment are being

transferred to the model. The model uses these returned values to determine its next

action.

5.1.1.3 Reset

This is the command used to reinitialize the environment and return all environment

variables to their defaults. It can be triggered manually or at the termination phase of

the episode.

5.1.2 Observations

The values returned from "step" function have a tuple format. This tuple object

contains more than one information about the environment.

5.1.2.1 Observation

An environment-specific object that represents your observation of the environment.

Sensor data for environments using sensors can be a sample frame for environments

using cameras.

5.1.2.2 Reward

The reward or penalty given to the model by the environment in response to the action

taken just before in the environment. Value ranges may vary from environment to

environment, but the model should always tend to get more rewards.

5.1.2.3 Done

It is a variable that gives information about whether the environment has terminated

after the action just taken in the environment. According to this variable, the
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environment is restarted or the agent routine can be terminated. Since the terminal

states of some environments are not defined, done may never get the value "True".

5.1.2.4 Info

It is a variable that has a lot of functionality when debugging is desired on the

environment. Additional information that does not affect the decision process of the

environment can be transferred and logged over this variable. However, since it will

be considered as a data leak, it is recommended not to use the values here during the

training process.

5.1.3 Spaces

Values defined in Gym environments can be expressed in two different types with their

intervals.

5.1.3.1 Discrete

For this value type, values are expressed with non-negative numbers. Thus, if there are

2 different actions that can be taken in the environment, the values of the action space

will be 0 or 1 within the scope of this definition.

5.1.3.2 Box

In this value type, the value space is considered in an n-dimensional box. Thus, each

value in the box can be defined separately with values between −in f and in f . It is

generally preferred for defining observation spaces. But it is also used to define the

action set in continuous-action situations where more than one action can be taken at

the same time in the environment.

5.2 Environments

Figure 5.2 : Example environments in Gym. [62]
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Gym provides a diverse set of environments, from simple to difficult, involving many

types of data. Environments aimed at completing small goals and testing the basic

principles of reinforcement learning, environments aiming to learn algorithm-based

planning processes only from examples, Atari game environments with visual

observation format, robotic environments with 2D and 3D dimensional physics

simulation characteristics are all available within the Gym package.

The environments used to test the algorithm within the scope of this study are as

follows:

• Pendulum-v0

• LunarLander-v2

• LunarLander-v2-Continuous

• BipedalWalker-v3

• Acrobot-v1

• Breakout-v0
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5.2.1 Pendulum-v0

Figure 5.3 : Pendulum-v0 Environment

In this environment, the inverted pendulum problem, which is a well-known problem

in the control literature is modeled. At the beginning of the environment, the pendulum

starts in a random position. The purpose of the environment is to bring the pendulum

to a position that will face upward and remain upright within the specified iteration

limit.

Due to the variables such as the gravity of the environment, the weight of the pendulum

and the magnitude of the applied force, it is not possible to reach the target with a

single movement in the environment configuration with the default values. Therefore,

the model needs to learn to plan to create the sling effect by accelerating the rod in

opposite directions.

5.2.1.1 Rewards

The reward decreases in proportional with the increase in the angle value away from

90 degrees, the rod speed and the applied force. Positive reward is not defined, so

the model will try to get the highest negative reward possible. The goal of the reward

is to prioritize keeping the pendulum upright at 90 degrees with minimal force and

acceleration.
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5.2.1.2 Observation Space

Assuming that the angle the pendulum makes with the plane parallel to the ground is

θ , the observation variables are as follows:

• cos(θ)

• sin(θ)

• θ̇

5.2.1.3 Action Space

As an action, a continuous torque value is taken and clipped by the environment at a

certain interval. The sign of the torque value determines the direction in which the

torque will be applied.

5.2.1.4 Parametrized Variables

In order to test the proposed algorithm, the following variables of the environment have

been parameterized and made changeable:

• g: The gravitational acceleration of the environment

• m: The mass of the pendulum

5.2.2 LunarLander-v2

Figure 5.4 : LunarLander-v2 Environment

In this environment, the problem of a space shuttle landing on the lunar surface is

modeled. At the beginning of the environment, the space shuttle is initialized at a
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constant height with acceleration in random direction and magnitude. The purpose of

the environment is to land the shuttle at the landing zone, which is the area indicated

by the flags. Smooth landings outside the landing area are also considered successful,

but they reward the agent less.

The problem in the environment is how to land in the target area by running which

engine and how much power at various angles. To support solving this exploration

problem, the agent is launched into the environment with random acceleration and

rotation.

5.2.2.1 Rewards

• Zeroing the speed after being properly placed in the landing area from the starting

point: [100−140]

• Accident situation: −100

• Rest situation: +100

• Each leg ground contact: +10

• Firing main engine: −0.3 per iteration

• Solved: +200

5.2.2.2 Observation Space

The observation variables are as follows:

• Normalized position at x

• Normalized position at y

• Normalized velocity at x

• Normalized velocity at y

• Angle θ of the shuttle

• Angular velocity ω of the shuttle

• Contact status of each leg of the shuttle

5.2.2.3 Action Space

The shuttle cannot run more than one engine at the same time. The agent can take

action to run only one of the right engine, left engine and bottom thrust main engine at

full power at a time.
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5.2.2.4 Parametrized Variables

In order to test the proposed algorithm, the following variables of the environment have

been parameterized and made changeable:

• g: The gravitational acceleration of the environment

• INITIAL_RANDOM: Magnitude of the initial random acceleration

5.2.3 LunarLander-v2-Continuous

This environment is the continuous-action type of the environment in Section 5.2.2.

5.2.3.1 Action Space

The shuttle can run more than one engine. The agent can take action to run the right

engine, left engine and bottom thrust main engine at different desired power levels at

the same time.

5.2.3.2 Parametrized Variables

As in Section 5.2.2, in order to test the proposed algorithm, the following variables of

the environment have been parameterized and made changeable:

• g: The gravitational acceleration of the environment

• INITIAL_RANDOM: Magnitude of the initial random acceleration

5.2.4 BipedalWalker-v3

Figure 5.5 : BipedalWalker Environment

In this environment, a robot with 2 separate legs with 2 degrees of freedom is tried

to reach the target. At the start of the environment, the robot spawns at the starting
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point with a random acceleration. By managing the foot actuators, it is expected to

learn to walk the target distance in a certain iteration. It can be considered as a difficult

problem to create a policy, as penalties or rewards are given only according to the

distance traveled and the accident situation.

5.2.4.1 Rewards

• Walking up to the far end: 300+

• Accident situation: −100

• Applied torque for each motor: −0.00035 per iteration

5.2.4.2 Observation Space

The observation variables are as follows:

• Hull angle θ

• Angular velocity ω of the hull

• Angles of each joint in each leg

• Contact status of each leg of the hull

5.2.4.3 Action Space

The environment has a continuous type of action scheme. Torque values to be supplied

to all 4 motors at the same time are produced by the model.

5.2.4.4 Parametrized Variables

In order to test the proposed algorithm, the following variables of the environment have

been parameterized and made changeable:

• g: The gravitational acceleration of the environment

• INITIAL_RANDOM: Magnitude of the initial random acceleration
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5.2.5 Acrobot-v1

Figure 5.6 : Acrobot Environment

In this environment, there is an acrobot system with two joints and two links. The

purpose of the environment is to raise the end link up from a certain height. At the

start of the environment, both links point directly to the ground. Action is taken by

applying torque to the first joint.

5.2.5.1 Rewards

• If the environment is not terminated: −1

• If the environment is terminated: 0

5.2.5.2 Observation Space

The observation variables are as follows:

• sin and cos of angle θ1 of the joint 1

• sin and cos of angle θ2 of the joint 2

• Angular velocity ω1 and ω2 of the joints
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5.2.5.3 Action Space

The environment has a continuous type of action scheme. The amount of torque

to be applied to the first joint can be specified as negative and positive magnitudes

for both directions. It will be clipped for that the torque magnitude remains within

predetermined limits.

5.2.5.4 Parametrized Variables

In order to test the proposed algorithm, the following variables of the environment have

been parameterized and made changeable:

• tmult: Torque multiplier

• m: The mass of the links

5.2.6 Breakout-v0

Figure 5.7 : Breakout Environment

This environment is a copied and adapted version of Breakout, an Atari 2600 game.

The aim of the environment is to break all existing bricks by bouncing the ball

without missing the ball. In cases where the ball is at equal speed or slower than

the paddle, keeping the paddle in line with the ball may be the simplest heuristic

solution. However, in order to make the problem more complex, the environment

does not provide the ball and paddle position as a regular output.
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5.2.6.1 Rewards

• For each brick destroyed from the top row to the bottom row: [6,5,4,3,2,1]

5.2.6.2 Observation Space

The observation variables are as follows:

• Snapshot of the game environment in 84x84 grayscale format

5.2.6.3 Action Space

The environment has discrete action space. The paddle can only be moved to the right

or left. No adjustment can be made regarding the speed.

5.2.6.4 Parametrized Variables

In order to test the proposed algorithm, the following variables of the environment have

been parameterized and made changeable:

• Paddle Width

• Paddle Speed
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6. RESULTS

In this section, the results obtained by running the proposed algorithm on Gym

environments introduced in Section 5.2 will be reported.

6.1 Pendulum-v0

(a) The best training result on Pendulum-v0.

(b) The best training result on Pendulum-v0.
Figure 6.1 : The best (a) and the worst (b) samples from Pendulum-v0 results.
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Table 6.1 : Average results for Pendulum-v0 environment

Property Value

Target Reward -200
Maximum Iterations 793948.65

After-Curriculum Reward -325.236
After-Vanilla Reward -1092.029

6.2 LunarLander-v2

(a) The best training result on LunarLander-v2.

(b) The worst training result on LunarLander-v2.
Figure 6.2 : The best (a) and the worst (b) samples from LunarLander-v2 results.
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Table 6.2 : Average results for LunarLander-v2 environment

Property Value

Target Reward 150
Maximum Iterations 353894.4

After-Curriculum Reward 93.519
After-Vanilla Reward 84.641

6.3 LunarLander-v2-Continuous

(a) The best training result on LunarLander-v2-C.

(b) The worst training result on LunarLander-v2-C.
Figure 6.3 : The best (a) and the worst (b) samples from LunarLander-v2-C results.
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Table 6.3 : Average results for LunarLander-v2-Continuous environment

Property Value

Target Reward 150
Maximum Iterations 309657.6

After-Curriculum Reward 126.885
After-Vanilla Reward 119.805

6.4 BipedalWalker-v3

(a) The best training result on BipedalWalker-v3.

(b) The worst training result on BipedalWalker-v3.
Figure 6.4 : The best (a) and the worst (b) samples from BipedalWalker-v3 results.
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Table 6.4 : Average results for BipedalWalker environment

Property Value

Target Reward 0
Maximum Iterations 346214.4

After-Curriculum Reward -68.975
After-Vanilla Reward -50.408

6.5 Acrobot-v1

(a) The best training result on Acrobot.

(b) The worst training result on Acrobot.
Figure 6.5 : The best (a) and the worst (b) samples from Acrobot results.
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Table 6.5 : Average results for Acrobot environment

Property Value

Target Reward -50
Maximum Iterations 17203.2

After-Curriculum Reward -126.96
After-Vanilla Reward -414.2

6.6 Breakout-v0

(a) The best training result on Breakout.

(b) The worst training result on Breakout.
Figure 6.6 : The best (a) and the worst (b) samples from Breakout results.
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Table 6.6 : Average results for Breakout environment

Property Value

Target Reward 200
Maximum Iterations 645120.0

After-Curriculum Reward 68.9
After-Vanilla Reward 27.5

6.7 Overall Results

Table 6.7 : Overall results of the proposed algorithm

Environment
Vanilla

Training
Reward

Curriculum
Training
Reward

Target
Reward Improvement (I)

Pendulum-v0 -1092.029 -325.236 -200 +85.96%
LunarLander-v2 84.641 93.519 150 +13.58%

LunarLander-v2-C 119.805 126.885 150 +23.45%
BipedalWalker-v3 -50.408 -68.975 0 −36.82%

Acrobot-v1 -414.2 -126.96 -50 +78.87%
Breakout-v0 27.5 68.9 200 +24%

After the results were normalized according to the distances to the target reward, the

relative improvement rate brought by the algorithm was calculated. The growth rate

equation used for each experiment can be expressed as in Equation 6.1:

• δV T : Reward difference between target and vanilla rewards

• δCT : Reward difference between target and curriculum rewards

I =
δV T −δCT

δV T
(6.1)

6.7.1 Discussion

It is seen that the proposed algorithm promises up to 85% improvement. Since the

algorithm is based on step-by-step statistical methods, it is interpretable and allows

to make reasonable observations about the experiment. Although the algorithm

contributes to the learning process in most cases, in some scenarios it can give

results that are no different or worse than vanilla training. The reason for this
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may be the complexity of the environment dynamics, the relevance of the selected

curriculum environment parameters to the learning process or the working principle

of the algorithm. The algorithm trains all parameter combinations one by one. At

the same time, it evaluates the models trained in all combinations separately on all

combinations. This workflow causes great complexity. The algorithm can be improved

with a heuristic to remove this drawback.

6.7.1.1 Future Work

• In order to get clearer and more precise results from the algorithm, instead of

making each experiment separately and aggregating the results, it can be ensured

that more efficient statistical models can be obtained by processing for all parallel

experiments at each step and aggregating the intermediate results step by step.

• Instead of experimenting with a grid-search type method on the given values

as in the current state, more clear parameter values can be found with a

randomized-search-based method by making probabilistic sampling in a given

value range.
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7. CONCLUSION

The curriculum outcomes of the algorithm have obvious advantages over standard

training. Since it generates the statistics according to the environment with ten different

seeds, its robustness is high and its reproducibility on other devices has been partially

proven. During the experiments, it was found that a variable thought to be important

was not important, and the effect that was thought to be created was the opposite.

Thanks to the proposed curriculum learning algorithm, improvements can be seen

with certain parameter options without the need for expertise in the field. This is

a helpful factor in clarifying the less obvious features related to the structure and

dynamics of the environment. The study can be made more stochastic with Gaussian

type random sampling methods, at the same time, performing the aggregation process

in the intermediate phases rather than at the end can increase the robustness and quality

of the results.
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[43] Shyam, P., Jaśkowski, W. and Gomez, F. (2019). Model-Based Active
Exploration, K. Chaudhuri and R. Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, PMLR, pp.5779–5788,
http://proceedings.mlr.press/v97/shyam19a.html.

[44] Mysore, S. (2019). Reward-guided Curriculum for Robust Reinforcement
Learning.

[45] Risi, S. and Togelius, J. (2019). Procedural Content Generation: From
Automatically Generating Game Levels to Increasing Generality in
Machine Learning, ArXiv, abs/1911.13071.

[46] OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew,
B., Petron, A., Paino, A., Plappert, M., Powell, G., Ribas, R.,
Schneider, J., Tezak, N., Tworek, J., Welinder, P., Weng, L., Yuan,
Q., Zaremba, W. and Zhang, L. (2019). Solving Rubik’s Cube with a
Robot Hand, ArXiv, abs/1910.07113.

[47] Andrychowicz, M., Crow, D., Ray, A., Schneider, J., Fong, R., Welinder, P.,
McGrew, B., Tobin, J., Abbeel, P. and Zaremba, W. (2017). Hindsight
Experience Replay, NIPS.

[48] Sutton, R.S., McAllester, D., Singh, S. and Mansour, Y. (2000). Policy
Gradient Methods for Reinforcement Learning with Function
Approximation, S. Solla, T. Leen and K. Müller, editors, Advances
in Neural Information Processing Systems, volume 12, MIT Press,
https://proceedings.neurips.cc/paper/1999/file/
464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

[49] Schulman, J., Levine, S., Abbeel, P., Jordan, M. and Moritz, P.
(2015). Trust Region Policy Optimization, F. Bach and D. Blei,
editors, Proceedings of the 32nd International Conference on Machine

62

http://proceedings.mlr.press/v97/pathak19a.html
http://proceedings.mlr.press/v97/shyam19a.html
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf


Learning, volume 37 of Proceedings of Machine Learning Research,
PMLR, Lille, France, pp.1889–1897, http://proceedings.mlr.
press/v37/schulman15.html.

[50] Joyce, J.M., (2011). Kullback-Leibler Divergence, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp.720–722, https://doi.org/10.1007/
978-3-642-04898-2_327.

[51] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O. (2017).
Proximal Policy Optimization Algorithms, ArXiv, abs/1707.06347.

[52] Wikimedia Commons, (2015), Multi-Layer Neural Network, https:
//commons.wikimedia.org/wiki/File:Multi-Layer_
Neural_Network-Vector.svg, [Online; accessed July 26, 2021].

[53] Wikimedia Commons, (2007), Undirected graph., https://commons.
wikimedia.org/wiki/File:Undirected.svg, [Online; ac-
cessed July 26, 2021].

[54] Wikimedia Commons, (2007), Directed graph., https://commons.
wikimedia.org/wiki/File:Directed.svg, [Online;
accessed July 26, 2021].

[55] Dijkstra, E.W. (1959). A note on two problems in connexion with graphs,
Numerische mathematik, 1(1), 269–271.

[56] Team, P.D., (2011), PyGame, http://pygame.org/.

[57] Kesting, A., Treiber, M. and Helbing, D. (2007). General lane-changing model
MOBIL for car-following models, Transportation Research Record,
1999(1), 86–94.

[58] Treiber, M., Hennecke, A. and Helbing, D. (2000). Congested traffic states in
empirical observations and microscopic simulations, Physical review E,
62(2), 1805.

[59] Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S. and Alahi, A. (2018).
Social GAN: Socially Acceptable Trajectories with Generative Ad-
versarial Networks, CoRR, abs/1803.10892, http://arxiv.org/
abs/1803.10892, 1803.10892.

[60] Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S. (2018). Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor, J. Dy and A. Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, PMLR, Stockholmsmässan,
Stockholm Sweden, pp.1861–1870, http://proceedings.mlr.
press/v80/haarnoja18b.html.

[61] Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor, M.E. and Stone,
P. (2020). Curriculum learning for reinforcement learning domains: A
framework and survey, Journal of Machine Learning Research, 21(181),
1–50.

63

http://proceedings.mlr.press/v37/schulman15.html
http://proceedings.mlr.press/v37/schulman15.html
https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-04898-2_327
https://commons.wikimedia.org/wiki/File:Multi-Layer_Neural_Network-Vector.svg
https://commons.wikimedia.org/wiki/File:Multi-Layer_Neural_Network-Vector.svg
https://commons.wikimedia.org/wiki/File:Multi-Layer_Neural_Network-Vector.svg
https://commons.wikimedia.org/wiki/File:Undirected.svg
https://commons.wikimedia.org/wiki/File:Undirected.svg
https://commons.wikimedia.org/wiki/File:Directed.svg
https://commons.wikimedia.org/wiki/File:Directed.svg
http://pygame.org/
http://arxiv.org/abs/1803.10892
http://arxiv.org/abs/1803.10892
1803.10892
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html


[62] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang,
J. and Zaremba, W., (2016), OpenAI Gym, http://arxiv.org/
abs/1606.01540, cite arxiv:1606.01540.

[63] Mayank M., (2018), Reinforcement learning — Agent’s action
and environemet’s reply, https://itnext.io/
reinforcement-learning-with-q-tables-5f11168862c8,
[Online; accessed July 26, 2021].

[64] Hoel, C.J., Wolff, K. and Laine, L. (2018). Automated speed and lane
change decision making using deep reinforcement learning, 2018 21st
International Conference on Intelligent Transportation Systems (ITSC),
IEEE, pp.2148–2155.

[65] Salvucci, D.D. and Gray, R. (2004). A Two-Point Visual Control Model of
Steering, Perception, 33(10), 1233–1248, pMID: 15693668.

[66] Vehicles — NVIDIA PhysX SDK 3.4.0 Documentation, https://docs.
nvidia.com/gameworks/content/gameworkslibrary/
physx/guide/Manual/Vehicles.html.

[67] Pacejka, H.B. Chapter 4 - Semi-Empirical Tire Models, H.B. Pacejka, editor,
Tire and Vehicle Dynamics (Third Edition), Butterworth-Heinemann,
pp.149–209, https://www.sciencedirect.com/science/
article/pii/B9780080970165000048.

[68] Kordani, A.A., Rahmani, O., Nasiri, A. and Boroomandrad, S.M. Effect of
Adverse Weather Conditions on Vehicle Braking Distance of Highways.

64

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://itnext.io/reinforcement-learning-with-q-tables-5f11168862c8
https://itnext.io/reinforcement-learning-with-q-tables-5f11168862c8
https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Vehicles.html
https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Vehicles.html
https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Vehicles.html
https://www.sciencedirect.com/science/article/pii/B9780080970165000048
https://www.sciencedirect.com/science/article/pii/B9780080970165000048


APPENDICES

APPENDIX A : Details about the custom PyGame environment of the first
preliminary study

APPENDIX B : Details about SimStar simulation environment
APPENDIX C.1 : Specifications of the hardware used for the proposed method
APPENDIX C.2 : The software-environment used for the proposed method and the

version information

65



66



APPENDIX A

A system with NVIDIA Tesla V100 GPU and 128GB RAM has been used in training.

Initialization Phase

The highway environment for training the RL agent is controlled by several parameters.
The highway is initialized with n number of lanes. Next, m agents are placed in the
environment, following certain rules. Each of the agents has a dimension of 4.5×2.5
meters.

The initial longitudinal (x0) and lateral (y0) positions of the vehicles were determined,
provided that the maximum initial vehicle spread of the vehicles did not exceed the
maximum distance dlong and not fall below the minimum inter-vehicle distance d4.

The agent in the middle was chosen as ego-vehicle when agents were sorted according
to their longitudinal positions. The agents in front of the ego-vehicle have relatively
lower initial speed v0 within the range of [v f ront

min ,v f ront
max ]. The agents behind the

ego-vehicle have relatively higher initial speed v0 within the range of [vrear
min ,v

rear
max ]. The

same range layout [vego
min,v

ego
max] also applies for the ego vehicle. Also, desired speeds

are defined for each agent included ego-vehicle in the range of [vd
min,v

d
max] and vd

ego. A
distance limit dmax has been set to finish each episode. These parameters have been
determined by taking reference values from [64]. Table A.1 shows the parameters.

Table A.1 : Simulation parameters

Minimum inter-vehicle distance, d4 25 m
Maximum initial vehicle spread , dlong 200 m

Desired speed for ego vehicle, vd
ego 25 m/s

Episode length, dmax 5000 m
Desired speed range for other vehicles, [vd

min,v
d
max] [18,26] m/s

Rear vehicles initial speed range, [vrear
min ,v

rear
max ] [15,25] m/s

Front vehicles initial speed range, [v f ront
min ,v f ront

max ] [10,12] m/s
Initial speed range for ego vehicle, [vego

min,v
ego
max] [10,15] m/s

Number of vehicles, m 9
Number of lanes, n 3

Vehicle and Steering Control Model

To simulate the dynamics of vehicles, non-linear kinematic bicycle model is used.
Steering angle δ f and the acceleration value a have been set to be control inputs. To
calculate δ f and a, two-point visual control model of steering [65] and the IDM [58]
is used, respectively. Steering angle δ f with two key-points from the rear and front of
the vehicle is estimated by a calculation method called two-point visual control model.
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Observation states and action spaces

The ego vehicle has the capability to observe the entire environment. The table A.2
shows the observable states which were described such that, it can adapt to different
number of vehicles which besiege the ego vehicle. [64].

Table A.2 : Observation states of the ego vehicle

s1, Normalized ego vehicle speed vego/vd
ego

s2, ego vehicle

{
1, if there is a lane to the leftt
0, otherwise

s3, ego vehicle

{
1, if there is a lane to the right
0, otherwise

s3i+1, Normalized relative position of vehicle i, ∆si/∆smax
s3i+2, Normalized relative velocity of vehicle i, ∆vi/vmax

s3i+3,



−1, if vehicle i is two lanes to the right of ego vehicle
−0.5, if vehicle i is one lanes to the right of ego vehicle
0, if vehicle i is in the same lane as the ego vehicle
0.5, if vehicle i is one lanes to the left of ego vehicle
1, if vehicle i is two lanes to the left of ego vehicle

where the maximum allowed speed for all vehicles is vmax, maximum relative position
between ego vehicle and vehicle i is ∆smax and the maximum allowed speed for ego
vehicle is vd

ego. The are three action spaces for the vehicle. a1 for no lane change, a2
for left lane change and a3 for right lane change .

Table A.3 : MOBIL Hyper-Parameters

Changing threshold, ath 0.1 m/s2
Politeness factor for rear vehicles, q 0.5
Politeness factor for side vehicles, p 1
Maximum safe deceleration, bsa f e 4 m2

Table A.4 : IDM Hyper-Parameters

Minimum gap, d0 2 m
Safe time headway, T 1.6 s

Desired deceleration, b 1.7 m/s2

Maximum gap for empty lane, dmax 10000 m
Minimum deceleration, amin −20 m/s2

Maximum acceleration, amax 0.7 m/s2

Acceleration exponent, δ 4

The environment-specific parameters of IDM and MOBIL algorithms used for lane
change and speed control are as in Table A.3 and Table A.4.
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Reward function

The objective of this work is to train an agent that can adapt in various environments
and drive safely without violating the safety of the road. The parameters used in the
reward function are shown below.

r(s,a,s′) =



Speed Reward: (vcur−15)/(vdes−15)
Low Acc Reward: −Speed Reward
Lane Change Penalty: −1
Out of Road Penalty: −100
Hard Crash: −100
Soft Crash: −10
Goal: +100

(A.1)

There are two different crashes defined in the reward function. Hard crash is the direct
collusion with the other vehicle whereas the soft crash is the dangerous approach to
the other vehicle.
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APPENDIX B

Vehicle Dynamics

SimStar makes use of NVIDIA PhysX [66] as the primary physics engine. It is a
highly sophisticated physics engine, and the realism in vehicle dynamics validated
through various real-life experiments. Additionally, the vehicle properties are adjusted
to match a real autonomous vehicle. They are also validated through real-life road
tests.

Weather Effects on Physics

Accurate simulation of weather effects depends on modelling of the interaction
between the tire and the road. Pajecka Tire Model [67] is used as the tire model.
The parameters regarding road friction and tire friction are calculated to match a real
world study on the topic. The work by Kordani et. al [68] calculates the road friction
coefficient at different weather conditions for different type of vehicles.

Table B.1 : Braking Distance of Vehicles on Adverse Conditions

Dry Rainy Snowy

Coefficient of Friction 0.8 0.4 0.28
Sedan (m) 105 114 133
Bus (m) 115 116 169

The results for the difference in braking differences on adverse weather conditions is
used in this work’s simulations to generate realistic behavior. Braking distance of a
vehicle going at 80kph can be seen at Table B.1 at each adverse condition. Since the
vehicles used in the simulator are different than the vehicles in the reference paper, only
modeling the adverse weather effect solutions are opted in proportion to the original
study.

The breaking distance of carefully modeled sedan vehicle on dry weather is 80.5
meters. Then, the rest of the adverse weather road models are adapted to create the
correct proportional effect on braking distances. The final results can be seen on the
Table B.2.

Table B.2 : Braking Distance of Ego Vehicle on SimStar

Dry Rainy Snowy

Sedan (m) 80.5 84.1 91.0
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Observation and Control

All vehicles get several information about the road and the vehicle itself as well
as information about other vehicles at every control step. SimStar provides several
sensors on every vehicle in order to supply the information demands of the control
algorithms. The road deviation sensor gives these information about the vehicle:

• The vehicle’s angular deviation from the road’s central axis in radians.
• The vehicle’s distance deviation from the road’s central axis in meters.

These two values are scalars and are included in the observation at every control step.

Figure B.1 : The sensor returns the distance of each ray to road boundaries.

The track sensor in Figure B.1, receives information about the vehicle’s location on the
road. This sensor is used to identify borders and edges of the road with respect to the
vehicle’s central body. The sensor gives a vector of 19 scalar values. These values are
being created by scanning the front-half of the surrounding area with 10◦ splits. Thus,
there are 19 distance sensor lines. These values are also included in the observation
state in the environment at every action step.

State and Action Space Of The Agent

Figure B.2 : Visualization of the observation states.

The state vector consist of 23 different inputs. 19 of these inputs come from the laser
sensors in Figure B.1. The other inputs are related to vehicle position on the track
and the current velocity of the vehicle in both X and Y directions. The complete
representation of the state vector is shown in Figure B.2.

There are 2 different actions that can be taken by the agent in the simulation. One of
the actions is throttle/break and the other one is steering action. They are represented
in Figure B.3.
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Figure B.3 : Visualization of the action space (steering and throttle).

Reward Structure

A custom reward calculation is implemented with a predetermined penalty. The reward
function for the training procedures is given in Eq. B.1. The reward is calculated at
every control step, when an action is done by the agent.

R = sp× (cos(β )−|sin(β )|− trpos) (B.1)

sp is the speed of the vehicle in km/h obtained from the resultant value of lateral and
longitudinal axes speeds. β is the angle in radians and it shows the angular deviation
of the vehicle heading direction and road central axis. trpos is the lateral deviation of
the vehicle from the road center in meters.

Eq. B.1 states that if the speed of a vehicle is high, resultant reward gets higher; but the
agent would have to minimize the result of |sin(β )| and trpos to get a positive reward. In
the reward function, the speed (sp) is multiplied with a difference of the road deviation
angle’s cosine and sine components to attain members of vehicle’s speed in lateral and
longitudinal motion. This means the agent will get negative reward with ratio of its
speed in lateral axis. Thus, the agent would learn to minimize its speed in a lateral
axis. Another variable in Eq. B.1 is trpos which is the distance of the agent from the
central axis in meters. Minus sign of trpos multiplied with resultant speed of the vehicle
makes the negative reward component of total reward calculation. The agent should
learn to stay at the center of the road as much as possible because of this negative
reward.

−20 penalty is given to the agent if it crashes, gets damaged, gets out of the road or
if its speed is too low. In all these situations, the agent gets a constant penalty, which
makes the penalization process equal for all terminations.
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APPENDIX C.1

The training, testing and analyzing processes of the proposed algorithm were carried
out on a workstation with the following hardware:

• NVIDIA RTX3090
• 128GB of RAM
• Intel® Xeon® Gold 5220R Processor
• 14TB HDD

APPENDIX C.2

The software, libraries and related versions used throughout the study in the thesis are
given in table C.2.1:

Table C.2.1 : Software information

Software Version

Python 3.7.10
GCC 7.3.0

numpy 1.19.2
gym 0.18.0

stable_baselines3 1.0
scipy 1.6.1

pandas 1.2.3
networkx 2.5
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